[0079] The processor 858 causes a display screen to be produced on the display 860. In one implementation, the display screen includes a selectable list of items (e.g., media items) from which a user may select one or more of the items. By the user providing a rotational action with respect to the rotational input device 854, the list can be scrolled through. The processor 858 receives the signals pertaining to the rotational action from the rotation pickup unit 856. The processor 858 then determines the next items of the list that are to be presented on a display screen by the display 860. In making this determination, the processor 858 can take into consideration the length of the list. Typically, the processor 858 will determine the rate of the rotational action such that the transitioning to different items in the media list can be performed at a rate proportional to the rate of the rotational action. [0080] The processor 858 can also control the audio feedback unit 862 to provide audio feedback to a user. The audio feedback can, for example, be a clicking sound produced by the audio feedback unit 862. In one embodiment, the audio feedback unit 862 is a piezoelectric buzzer. As the rate of transitioning through the list of items increases, the frequency of the clicking sounds can increase. Alternatively, when the rate that the rotational input device 854 is turned slows, the rate of transitioning through the list of items decreases, and thus the frequency of the clicking sounds correspondingly slows. Hence, the clicking sounds provide audio feedback to the user as to the rate in which the items within the list of items are being traversed. [0081] FIG. 9 shows the media player 700 of FIG. 7B being used by a user 920 in accordance with one embodiment of the invention. In this embodiment, the user 920 is linearly scrolling (as shown by arrow 924) through a list of songs 922 displayed on the display screen 904 via a slider bar 923. As shown, the media device 900 is comfortably held in one hand 926 while being comfortably addressed by the other hand 928. This configuration generally allows the user 920 to easily actuate the rotational input device 910 with one or more fingers. For example, the thumb 930 and right-most fingers 931 (or left-most fingers if left handed) of the first hand 926 are used to grip the sides of the media player 900 while a finger 932 of the opposite hand 928 is used to actuate the rotational input device 910. [0082] Referring to FIG. 9, and in accordance with one embodiment of the invention, the rotational input device 910 can be continuously actuated by a circular motion of the finger 932 as shown by arrow 934. For example, the finger may rotate relative to an imaginary axis. In particular, the finger can be rotated through 360 degrees of rotation without stopping. This form of motion may produce incremental or accelerated scrolling through the list of songs 922 being displayed on the display screen 904. [0083] FIG. 10A is a flow diagram of user input processing 1000 according to one embodiment of the invention. The user input processing 1000 is, for example, performed with respect to the computer system 650 illustrated in FIG. 7A or the media player 700 illustrated in FIG. 7B. [0084] The user input processing 1000 displays 1002 a graphical user interface. Then, a rotational movement associated with a user input action is received 1004. Here, the user input action is generally angular, as opposed to linear, and thus pertains to a rotational movement. As discussed in more detail below, the rotational movement can be provided by the user input action. In one example, the rotational movement can be caused by a user acting to rotate a navigational wheel through a user input action. In another example, the rotational movement can be caused by a user's finger or a stylist being moved in a rotational manner through a user input action with respect to a touch pad. After the rotational movement has been received 1004, the rotational movement is converted 1006 into a linear movement. The linear movement is then applied 1008 to at least one object of the graphical user interface. For example, the object of the graphical user interface can be a list, menu or other object having a plurality of selectable items. The linear movement can effect a scroll type action with respect to the object (e.g., list or menu). Alternatively, the linear movement can effect a level adjustment (e.g., volume adjustment) or position adjustment (e.g., slider bar position). After the linear movement has been applied 1008, the user input processing 1000 is complete and ends. [0085] FIG. 10B is a flow diagram of user input processing 1050 according to another embodiment of the invention. The user input processing 1050 is, for example, performed with respect to the computer system 650 illustrated in FIG. 7A or the media player 700 illustrated in FIG. 7B. [0086] The operations 1052-1060 performed by the user input processing 1050 are similar to those like operations performed by the user input processing 1000 illustrated in FIG. 10A. Additionally, the user input processing 1050 operates to provide 1056 audible feedback corresponding to the rotational movements. In other words, as the rotational movement associated with user input action is received 1054, audible feedback corresponding to the rotational movement is provided 1056. Such audible feedback provides the user with feedback concerning the extent to which rotational movement has been input. In one embodiment, the rotational movement associated with user input action is converted into linear movement and applied to an object of a graphical user interface. For example, when the object of the graphical user interface is a multi-item list that is displayed for user scrolling and selection actions, the rotational movement associated with the user input action represents a distance traversed in the multi-item list. When acceleration is applied, the distance traversed is increased (e.g., multiplied). In one embodiment, the audible feedback is provided through a piezoelectric buzzer that is controlled by a processor (or other circuitry). For example, the audio feedback unit 862 shown in FIG. 8B can be a piezoelectric buzzer. The controller for the piezoelectric buzzer can, for example, be a processor of the computer system 650 or the media player 700, or some other circuitry coupled to the piezoelectric buzzer. [0087] FIG. 11 is a flow diagram of user input processing 1100 according to another embodiment of the invention. The user input processing 1100 is, for example, performed by a computing device, such as the computer system 650 illustrated in FIG. 7A or the media player 700 illustrated in FIG. 7B. [0088] The user input processing 1100 begins by the display 1102 of a portion of a list of items together with a select bar. The select bar typically points to or highlights one or more of the items of the list of items. In general, the select bar can be associated with any sort of visual indication